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Abstract
This work shows that delocalization phenomena in single-electron quasi-one-dimensional
quantum chains may occur at points different from the center of the energy spectrum (E = 0)
and in systems lacking the symmetry E → −E . It is found that the peaks appearing in the
average conductance are controlled by the band structure of the periodic system underlying the
disorder. The average conductance is expanded in powers of the disorder strength, allowing the
conductance to be redefined as the sum of a regular and an anomalous contribution. The first
non-vanishing term of the anomalous part is of the fourth order. The fourth-order term can be
calculated for any number of coupled chains in terms of a matrix expression. For strictly
one-dimensional systems the expansion is calculated up to the 12th order for both diagonal and
real off-diagonal disorder and is compared with the numerical data. It is also found that the
anomalous contribution defined here is responsible for an even–odd effect of the average
conductance.

1. Introduction

It is well known that the center of the energy spectrum
(E = 0) of the one-dimensional Anderson model (and
of the many variants obtained by changing the type of
disorder and the number of coupled chains) shows special
features. Depending on the details of the model, it has
been demonstrated that this point presents anomalies in the
localization length [12, 14, 16, 22, 23, 26, 28], divergent
density of states [2, 9, 13], even–odd effects [2, 18, 19],
violation of single-parameter scaling (SPS) [5, 8, 21, 25, 27]
and anomalously localized states (ALS) [1]. Similar features
appearing at E = 0 have also been shown to exist in higher
dimensions [6, 10, 17, 20].

Despite the numerous studies on these anomalies, some
features remain to be fully understood. In particular, it is not
clear what causes the point E = 0 to be so special. It is
worth noticing that the origin of the delocalization of states
of the one-dimensional hopping-disordered Anderson model
has already been claimed to be due to an additional (chiral)
sublattice symmetry [3, 6, 19, 18]. Additional symmetries of
the Hamiltonian have also been considered as the origin of the
violation of SPS at E = 0 [5, 8, 25].

Among the various theoretical frameworks adopted in
these studies are renormalization group theory, the nonlinear
σ -model, scaling theories and random matrix theory. The
Møller operator [11] of conventional scattering theory has
never been used so far to address the question of conductance
anomalies. Although the implementation of this technique can
be inconvenient as it requires inversion of large matrices, it
allows us to express in a natural way the conductance in terms
of a very limited number of parameters, each of which has
a deep physical meaning. These are the Bloch angles, the
density of states of the unperturbed system, the shape of the
Bloch states and the type of disorder (see equation (14)). The
energies at which the anomalies in the conductance appear
must correspond to some special conditions occurring for the
above-mentioned parameters.

The results described here show that, for strictly one-
dimensional systems at the point E = 0, where the
anomalies occur, the Bloch angles involved must differ by π .
Analogously, for N > 1 coupled chains I find that at the energy
E = 0 of the models considered in the literature there exist one
or more pairs of Bloch angles such that their difference is equal
to π .

I show that these are only special examples of a more
general phenomenon, the ‘π -coupling’ of the energy bands,
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described in this paper; moreover I explain the mechanism that
causes the conductance to be so greatly affected by these ‘π -
couplings’.

2. The model

The model considered here is defined by the following
Schrödinger equation (see also figure 1):

Unψn + Tn−1ψn−1 + T †
n ψn+1 = Eψn, ∀n ∈ Z, (1)

where Un is the N × N matrix (N is the number of coupled
chains) connecting the sites belonging to the n th column of
the wire and Tn is the N × N matrix specifying the hopping
amplitudes from column n to column n + 1. The index n
labels the columns along the wire (see figure 1) and ψn is an
N-dimensional vector. The wire extends from n = −∞ to ∞.

The disorder is defined by

Un = U + W U
n , Tn = T + W T

n , (2)

where U and T are the constant matrices defining the periodic
chain system, and W U

n and W T
n are some randomly distributed

matrices that are non-zero only for n = 1, . . . ,L (L is the
length of the disordered region). The disorder matrices are
given by
(
W U

n

)
i, j

≡ wU
i,iχi,i for i = j ; n = 1, . . . ,L; wU

i,i ∈ R

(
W U

n

)
i, j

≡ wU
i, jχi, j for i > j ; n = 1, . . . ,L; wU

i, j ∈ C

(
W U

n

)
i, j

≡ (
W U

n

)
j,i

for i < j ;
(
W T

n

)
i, j

≡ wT
i, jχi, j ∀ i, j ; n = 1, . . . ,L − 1;wT

i, j ∈ C

(3)

where every χ represents a random number in [−1/2, 1/2].
All the χs appearing in the previous definition are independent
stochastic variables. Therefore all the random numbers added
to the Hamiltonian are in general different (compatible with
the constraint H = H †). Notice that the disorder on the
self-energies (diagonal disorder) is represented only by the
diagonal of the W U

n matrices while all the other terms represent
the hopping disorder (off-diagonal disorder).

For later uses (see section 4), the ‘global’ rescaling of the
disorder is defined by rescaling both matrices wT

i, j and wU
i, j

according to

w
T (U)
i, j → wGw

T (U)
i, j , wG ∈ R

+. (4)

3. Conductance in terms of the Møller operator and
consequences

It is well known that the free Hamiltonian H0 of the system can
be diagonalized by means of Bloch states. These states can be
written in the following form:

φn(θB, ν) ≡ Z νθB
einθB, θB ∈ [−π, π],

ν = 1, . . . , N, n ∈ Z; (5)

where θB is the Bloch angle of the state, ν is the ‘channel’ index
and Z νθB

is defined as the νth column of an N×N unitary matrix
ZθB diagonalizing the following Hermitian matrix:

Q = T e−iθB + U + T † eiθB . (6)

Figure 1. Scheme of the multichain system with N = 3. The
diagonal disorder is indicated by means of spiky shapes and the
off-diagonal disorder by means of lines of different thicknesses. The
column indicated as ‘evaluation’ is used in equation (10) to evaluate
the transmission amplitudes.

The cases where, on the left of the disordered region, there
is only one Bloch state with positive group velocity (defined
by vg(θ, ν) ≡ 1

h̄
∂E(θ,ν)
∂θ

) and on the right there is no state with
negative group velocity, are used to define the conductance.
These cases are described by

ψ(η)n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φn
(
θ+
η (E), η

)

+
∑

ν

AR
η→νφn

(
θ−
ν (E), ν

)
for n < 1

∑

ν

AT
η→νφn

(
θ+
ν (E), ν

)
for n > L,

(7)

where the amplitudes AT(R) are determined by requiring ψ(η)n

to be an eigenvector of the complete Hamiltonian H = H0 +
W .

The conductance at the energy E is then expressed only in
terms of the transmission amplitudes:

g(E) = 2e2
∑

η,ν

D(E, η)|AT
η→ν |2vg(E, ν), (8)

where D(E, η) = 1
2π | ∂E(θ,η)

∂θ
|−1 is the density of states per unit

length in the channel η at energy E .
The state ψ(η) in equation (7), and hence the transmission

amplitudes AT, can be obtained directly by applying the Møller
operator �+ (defined abstractly by �+ ≡ limt→∞ e−iH t eiH0t ,
see section 3.5 or see [11]) to the Bloch state φ(θ+

η , η):

ψ(η) ≡ �+φ(θ+
η , η). (9)

Starting from equation (9), it can be seen that, if the
matrix ZθB is constant in θB (see section 3.3), the transmission
amplitude is given by (see an example of its application in
section 3.4)

AT(η → ν) =
〈
⎛

⎜
⎜
⎜
⎝

0
0
...

êν

⎞

⎟
⎟
⎟
⎠

∣
∣
∣∣

1

1 − FG̃W̃

∣
∣
∣∣

⎛

⎜
⎜
⎜
⎝

êη eiθ+
η

êη ei2θ+
η

...

êη ei(L+1)θ+
η

⎞

⎟
⎟
⎟
⎠

〉

.

(10)
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Table 1. Eigenvalues of the free Green’s function and phases; λU
η (T ) are the eigenvalues of U(T ) which exist because of the hypothesis

ZθB = constant. In this case the bands are given by E(θB, η) = λU
η + 2λT

η cos(θB).

G̃η,η (Fn)
±
η,η

2 <
λU
η −E

λT
η

− 1

λU
η

√

4−
(
λU
η −E

λT
η

)2

⎡

⎢
⎣

− λU
η −E

λT
η

−
√(

λU
η −E

λT
η

)2

−4

2

⎤

⎥
⎦

|n|

−2 <
λU
η −E

λT
η

< 2 −i 1

|λU
η |

√

4−
(
λU
η −E

λT
η

)2

⎡

⎢
⎣

− λU
η −E

λT
η

+i

√(
λU
η −E

λT
η

)2

−4

2

⎤

⎥
⎦

|n|

for λT
η,η < 0

⎡

⎢
⎣

− λU
η −E

λT
η

−i

√(
λU
η −E

λT
η

)2

−4

2

⎤

⎥
⎦

|n|

for λT
η,η > 0

λU
η −E

λT
η

< −2 1

λU
η

√

4−
(
λU
η −E

λT
η

)2

⎡

⎢
⎣

− λU
η −E

λT
η

+
√(

λU
η −E

λT
η

)2

−4

2

⎤

⎥
⎦

|n|

The meaning of the symbols entering in equation (10) is
specified below:

• êν is the vector of dimension N having one at
the νth position and zero elsewhere. The different
rows of the bracketed states correspond to the values
n = 1, . . . ,L + 1.

• W̃ is given by

W̃ = Z
†(DW D)Z,

where D is the projector (with finite image size, see
section 3.5) on the subspace n = 1, . . . ,L + 1 containing
the disorder and Z is the (L + 1)N × (L + 1)N block-
diagonal matrix with blocks equal to Z .

• G̃ is the block-diagonal matrix with blocks equal to G̃ ≡
Z †G Z (G is the free Green’s function projected onto the
left and onto the right of the same column).

• The matrix F is defined by

F =

⎛

⎜
⎜⎜
⎝

I F−
1 · · · F−

L
F+

1 I · · · F−
L−1

...
...

. . .
...

F+
L F+

L−1 · · · I

⎞

⎟
⎟⎟
⎠
, (11)

where I is the N×N unit matrix and F±
n are defined below.

• The matrices G̃ and F±
n are N × N diagonal matrices

given by

G̃ =

⎛

⎜
⎜
⎜
⎝

G̃1,1 0 · · · 0
0 G̃2,2 · · · 0
...

...
. . . 0

0 0 0 G̃ N,N

⎞

⎟
⎟
⎟
⎠

;

F±
n =

⎛

⎜
⎜
⎜
⎝

(Fn)
±
1,1 0 · · · 0

0 (Fn)
±
2,2 · · · 0

...
...

. . . 0
0 0 0 (Fn)

±
N,N

⎞

⎟
⎟
⎟
⎠
,

(12)

where the ηth diagonal element corresponds to the ηth
band as given in table 1.

In the case that −2 <
λU
η −E

λT
η

< 2 (i.e. in the case that the

ηth band possesses states with energy E), G̃η,η and (Fn)
±
η,η can

be expressed only in terms of the band derivatives and of the
Bloch angles:

G̃η,η = −i2πD(E, η) = −i

∣
∣∣
∣
∂E(θ,ν)
∂θ

∣
∣∣
∣

−1

,

(Fn)
±
η,η = e±iθ±

η n,

(13)

where θ+(−)
η are the Bloch angles at which the ηth band has

energy E and positive (+) or negative (−) group velocity.

3.1. Consequences for the conductance

Equations (10) and (13) immediately imply that, under the
following assumptions:

• the Bloch-states matrix Z ≡ ZθB is constant (see
section 3.3),

• at the energy E all the bands are present,

the average conductance 〈g(E)〉 of a system can be expressed
as a function of the following quantities only:

• the 2N Bloch angles θ±
ν (E),

• the 2N derivatives ∂E(θ,η)
∂θ

|θ±
η (E),

• the constant matrix Z ,
• the type of disorder (i.e. L and the coefficients in

equation (3)).

In other words, one can write

〈g〉 = 〈g〉
({
θ±
ν

}
,
{

G̃η,η

}
, Z ,L,

{
w

T (U)
i, j

})
. (14)

3
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Figure 2. Sketch of the example considered in this section. It
consists of a disordered region of length L = 2 where two sites have
diagonal disorder (spiky shapes) and one hopping has off-diagonal
disorder (thicker line).

3.2. Important corollaries

If a system satisfies the hypothesis given in section 3.1 and
also exhibits a peak in the average conductance g(E) for some
special energies, these particular energies must be associated
with a special condition occurring on the Bloch angles θ±

ν (E)
and/or on the derivatives ∂E(θ,ν)

∂θ
|θ±
ν (E). This is because the other

quantities in equation (14) remain constant when the energy is
varied.

For a single chain, it can immediately be seen that the
derivatives ∂E(θ,ν)

∂θ
|θ±
ν (E) do not show any special behavior when

the energy is varied around zero (these derivatives have neither
special values nor variations of the symmetry). It can hence
be concluded that the angles involved are at the origin of the
peak observed. Moreover, the observation that, at the center of
the energy spectrum (E = 0) of any one-dimensional system
the Bloch angles are such that θ+ − θ− = ±π (the band
structure is always a single cosine), implies that this condition
is responsible for the appearance of the peaks.

For a larger number of coupled chains it is, however, not
possible to show using simple arguments that the derivatives
∂E(θ,ν)
∂θ

do not play a role in the appearance of the peaks,

since symmetry properties of these values (like ∂E(θ,ν)
∂θ

=
∂E(θ,η)
∂θ

for ν 	= η) might appear as the energy is varied.
However, by performing a perturbative expansion of the
average conductance, it is shown in this paper that the
appearance of the peaks is due uniquely to the fact that a class
of diagrams sum up coherently whenever there exists a pair of
bands (ν, η) and an integer q such that θ+

ν − θ−
η = qπ . For

convenience, the occurrence of such a condition will be called
‘π -coupling of the energy bands’.

3.3. The assumption ZθB = constant

The assumption that ZθB (defined by equation (6)) is
independent of θB is equivalent to saying that the shape
of the Bloch states remains the same along each band.
This assumption is motivated by the fact that most of the
models considered in the previous works satisfy the same
condition. Moreover the whole mathematical formalism is
greatly simplified without hiding the mechanism responsible
for the resonances. Stating that ZθB is constant is equivalent to
saying that the matrices U and T are both diagonalizable and
have a common basis of eigenvectors. Otherwise, a sufficient
condition for ZθB to be constant is that T † = T and the

Figure 3. Band structure of the perfect two-chain system. In this
figure the energy E = 0.8 is chosen as an example to define the
Bloch angles θ±

1(2) and the derivatives involved.

commutator [T,U ] vanishes (e.g. when U is a multiple of the
identity, as is usually assumed, or when there is a single chain).

3.4. Example of use of the transmission amplitude equation

As an example one can consider the two coupled chains of
figure 2, where w1 and w2 are diagonal disorders and w2

is a hopping disorder. Let us suppose that the hoppings of
the unperturbed system are equal to −1 and that the on-site
energies are equal to zero. The Hamiltonian H = H0 + W of
the complete system is then given by
⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

. . .
...

...
...

· · · U1 T †
1 0 · · ·

· · · T1 U2 T †
2 · · ·

· · · 0 T2 U3 · · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

. . .
...

...
...

...
...

...

· · · w1 −1 −1 + w∗
2 0 0 0 · · ·· · · −1 0 0 −1 0 0 · · ·

· · · −1 +w2 0 0 −1 −1 0 · · ·· · · 0 −1 −1 w3 0 −1 · · ·
· · · 0 0 −1 0 0 −1 · · ·· · · 0 0 0 −1 −1 0 · · ·

...
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

(15)

The unperturbed system has two bands, which are shown
in figure 3. The Bloch states are given by

φn(θ1, ν = 1) = 1√
2

(
1

−1

)
einθ1,

φn(θ2, ν = 2) = 1√
2

(
1
1

)
einθ2

(16)

therefore the matrix Z is given by Z = 1√
2

( 1 1
−1 1

)
.

4
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The matrices F, G̃ and W̃ appearing in equation (10) are
given by

F =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 e−iθ−
1 0 e−i2θ−

1 0
0 1 0 e−iθ−

2 0 e−i2θ−
2

eiθ+
1 0 1 0 e−iθ−

1 0
0 eiθ+

2 0 1 0 e−iθ−
2

ei2θ+
1 0 eiθ+

1 0 1 0
0 ei2θ+

2 0 eiθ+
2 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

(17)

G̃

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−i∣
∣
∣ ∂E(θ,1)

∂θ

∣
∣
∣

0 0 0 0 0

0 −i∣
∣
∣ ∂E(θ,2)

∂θ

∣
∣
∣

0 0 0 0

0 0 −i∣
∣∣ ∂E(θ,1)

∂θ

∣
∣∣

0 0 0

0 0 0 −i∣
∣
∣ ∂E(θ,2)

∂θ

∣
∣
∣

0 0

0 0 0 0 −i∣
∣
∣ ∂E(θ,1)

∂θ

∣
∣
∣

0

0 0 0 0 0 −i∣
∣
∣ ∂E(θ,2)

∂θ

∣
∣
∣

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

(18)

W̃ =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

w1 −w1 −w∗
2 w∗

2 0 0
−w1 w1 −w∗

2 w∗
2 0 0

−w2 −w2 w3 w3 0 0
w2 w2 w3 w3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

(19)

where θ±
1(2) and the derivatives ∂E(θ,1(2))

∂θ
are also shown in

figure 3. Using the matrices just defined, the transmission
amplitude from the band η = 1 to the band ν = 2 for example
becomes

AT(1 → 2) = (
0 0 0 0 0 1

) [
I − FG̃W̃

]−1

×

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

eiθ+
1

0

ei2θ+
1

0

ei3θ+
1

0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

. (20)

3.5. Derivation of the transmission amplitude equation

The abstract definition of the Møller operator �+ is given by
the following limit (see, e.g., [11]):

�+ ≡ lim
t→∞ e−iH t eiH0t . (21)

This means that �+ makes first a free evolution from the
present to a remote time in the past (which has the effect
of a translation if the wavefunction has a well-defined group
velocity), followed by a complete evolution from that past to
the present, which has the effect of ‘throwing’ the wavepacket

on the scatterers. This intuitively justifies the validity of

�+φn
(
η, θ+

η (E)
)

=

⎧
⎪⎨

⎪⎩

φn
(
η, θ+

η (E)
) +

∑

ν

AR
η→νφn

(
θ−
ν (E), ν

)
, n < 1

∑

ν

AT
η→νφn

(
θ+
ν (E), ν

)
for n > L,

(22)

as already seen in equation (7).
When the Møller operator is applied on an eigenstate φ of

the free Hamiltonian, it can be written in a particularly simple
form. It can be shown that (see [11])

�+φ(θ+
η , η) =

(
1 + 1

E − H + iε
W

)
φ(θ+

η , η) (23)

=
(

1

1 − G(E)W

)
φ(θ+

η , η) (24)

where

• E ≡ E(θ+
η , η),

• W ≡ H − H0 is the matrix of disorder,
• G(E) is the retarded Green’s function of the free system;

G(E) ≡ 1/(E − H0 + iε),
• Dyson’s equation was used to derive (24) from

equation (23).

In the last equation, all the matrices are actually ∞ × ∞.
In order to obtain an equation which can be implemented
numerically, the problem has to be reduced to a finite-
dimensional one. This can be done because the disorder matrix
W is non-zero only in the finite submatrix corresponding to the
sites in n = 1, . . . ,L; the derivation is shown below.

From equations (7) and (8) it follows that, in order to
calculate the transmission amplitudes {AT

η→ν}, it is enough to

know the outgoing wavefunction ψ(η)n only in a finite region on
the right side of the disorder; this is the ‘evaluation’ column
indicated in figure 1. It is hence enough to evaluate the left-
projected matrix PB�

+, where PB is the projector over some
finite region B larger than the disordered region. The fact that
the Møller operator, as given by equation (23), has the disorder
matrix W on its right allows the Møller operator to be projected
also on the right.

Before continuing, it is necessary to define two auxiliary
operators. These operators differ from the standard projectors
because of the dimensions of their image space and domain
space. I define the operators DB and DB in the following way
(in this definition B denotes a generic region of the wire, i.e. a
subspace of the Hilbert space C

∞):
if M is a generic ∞ × ∞ matrix, then

• M DB is the matrix of size ∞×b (b is the dimension of the
B subspace) defined by dropping all the columns which do
not correspond to the subspace B ,

• DB M is the matrix of size b × ∞ defined by dropping all
the raws which do not correspond to the subspace B .

The operator DB is defined so as to perform the inverse
operation of DB . In particular, if M (B) is an ∞ × ∞ matrix
such that its image is in B and such that the complement to B
is in its kernel (i.e. PB M (B)PB = M (B)), then DB DB M (B) =
M (B)DB DB = M (B). In practice DB restores the null columns
or rows which DB eliminates.
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The reason for introducing the operators DB and DB is
also to avoid the confusion due to the fact that, if � is an
invertible matrix (and the region B is not the hole wire), then
PB�PB is not invertible but DB�DB is invertible.

It is possible now to continue the derivation starting from
equation (24):

PB�
+ = PB

(
1

1 − GW

)

= PB (1 + GW + GW GW + GW GW GW + · · ·)
= PB (1 + G(PB W PB )+ G(PB W PB )G(PB W PB )+ · · ·)
= PB(1+G(PB W PB )+ G(PB W PB )G(PB W PB)+ · · ·)PB

= DB DB(1 + G(PB W PB )

+G(PB W PB )G(PB W PB )+ · · ·)DB DB

= DB (1B B + G B B WB B + G B B WB B G B B WB B + · · ·) DB

= DB

(
1B B

1B B − G B B WB B

)
DB (25)

where the subscript B B denotes the application of the operator
DB both on the left and on the right. The important feature of
equation (25) is that the expression between parentheses is a
finite matrix which can be inverted numerically (specifically I
used the LAPACK Fortran libraries, see http://www.netlib.org/
lapack/).

The final amplitude equation in (10) follows by means of

Z
†�+,B BZ = Z

†

[
1B B

1B B − G B B(E)WB B

]

Z

= 1

(Z)−1[1B B − G B B(E)WB B ](Z†)−1

= 1

1B B − Z†G B B(E)WB BZ

= 1

1B B − Z†G B B(E)ZZ†WB BZ

= 1

1B B − FG̃W̃
(26)

and noting that the Bloch state appearing in the ket of
equation (10) can be written in the following form:

PB [|Eo, η〉] =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

z1,η eiθη

...

zN,η eiθη

...

z1,η ei(L+1)θη

...

zN,η ei(L+1)θη

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

= Z

⎛

⎜
⎜
⎜
⎝

(eη) eiθη

...

(eη) ei(L+1)θη

⎞

⎟
⎟
⎟
⎠
.

(27)

3.6. Observation on the numerical precision and comparison
with the Keldysh formalism

All the numerical data produced in this work has been
obtained by means of Fortran codes implementing the Keldysh
formalism (see [7]) or the Møller operator as presented in

this paper. The two methods require different inputs. In
particular, the Keldysh formalism requires the calculation of
the Green’s function of a semi-infinite perfect multichain. If
one calculates this quantity by the method of decimation there
might appear problems of numerical convergence, especially
near to the points where the peaks described in this paper
appear. This problem can be solved by controlling numerically
the convergence of the decimation process, or by means of the
following analytic expression:

G(∞/2) = 1
2 T −1[(E − U)− (G∞)]T −1 (28)

where G(∞/2) is the Green’s function of a semi-infinite
multichain projected on the left and on the right on the first
column, and G∞ is the Green’s function of the corresponding
infinite system projected on the left and on the right on the
same column. This equation is valid under the hypothesis
that the free hopping matrix T is Hermitian, i.e. T = T †

and invertible (I believe, however, that a generalization can be
found). This equation can be demonstrated by taking an infinite
multichain, dividing it into three separate regions (two semi-
infinite multichains and a single column) and using standard
linear algebra techniques to express the inverse of a matrix
projected on a subspace as a function of the same matrix but
projected on the complementary space (partition technique).

The numerical codes used in this work led to identical
numerical results, also at the critical energies where the peaks
appear. This proves that the numerical codes used are reliable
and that the two formalisms are equivalent. Theoretically,
however, there is a difference between the two formalisms:
while the Keldysh formalism is ‘local’ in the sense that one
has to perform a series of matrix multiplications from one side
to the other of the disordered region, the Møller operator is
‘global’ in the sense that it requires to invert at once a matrix
as big as the disordered region. This justifies intuitively the
reason why the Møller operator is more adequate to describe
the π -couplings since they arise from ‘global’ diagrams (in the
sense that they go back and forth several times in the disordered
region) as described in this paper.

4. Curves of constant average conductance: the
‘w2

GL = constant’ law

An important observation for the purposes of this paper
is that, for any given kind of disorder (as specified by
equation (3)), rescaling the global intensity of disorder wG

(as defined in equation (4)) and the length L such that
w2

GL = constant, produces systems having (almost) the same
average conductance 〈g(E)〉. Figures 4(a) and (b) show a few
representative examples illustrating this scaling law.

Consequently, if the average conductance is plotted versus
the variables (L, 1/w2

g), within a certain approximation the
curves of constant height are rays passing through the origin.
This scaling law is best obeyed in the limit L → ∞ (according
to numerical simulation) and with no exceptions in energy
(including the energies where the peaks arise). However, near
to the peaks and around the energies where the free density of
states (DOS) diverges, the convergence of 〈g(E)〉w2

GL=const for
L → ∞ is slower (see, e.g., figure 4(a) at E = 1).
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Figure 4. (a) Comparison of the average conductance of two rescaled systems: the first has L = 2000, the second L = 500, but they satisfy
the condition w2

GL = constant. (b) Typical plot of pairs of values (wG,L) for which the average conductance is constant (see the legend).
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Figure 5. Average conductance for different amounts of diagonal disorder (a) and real off-diagonal disorder (b).

5. Results for one-dimensional systems (N = 1)

At first I consider truly one-dimensional systems (N = 1)
with pure diagonal or real off-diagonal disorder. These types
of disorders are often considered in the literature. One-
dimensional systems always have a π -coupling at the center
of the energy spectrum (see section 3.2).

5.1. Diagonal disorder

The curves in figure 5 represent a typical profile of the average
conductance for a system with diagonal disorder, with the
peaks at E = 0 clearly visible. According to equation (14),
when the energy is varied, not only do the Bloch angles θ+
and θ− change, but so does the value of the Green’s function
G̃1,1. Hence, it is interesting to calculate numerically the
average conductance in the (θ+, θ−) plane keeping G̃1,1 fixed.
A typical result of such a simulation is presented in figure 6(a).
This plot shows clearly that, when the difference θ+ − θ−
equals an integer multiple of π , the average conductance
acquires an additional contribution over a flat background

value. The features of figure 6(a) can be illustrated by
performing the perturbative expansion of the Møller operator.

The strength of diagonal disorder will be abbreviated here
as wd (i.e. wd ≡ wU

1,1).
Developing the denominator of (10) as done in

equation (25), and assuming for simplicity that G̃1,1 = −i,
it can be shown that average conductance is given by

〈g(E)〉 = 〈|AT
1→1|2〉

=
〈(

f − iwd

∑

a

χa fa −w2
d

∑

ab

χaχb fab

+ iw3
d

∑

abc

χaχbχc fabc +w4
d

∑

abcd

χaχbχcχd fabcd

)

×
(

f + iwd

∑

a

χa fa −w2
d

∑

ab

χaχb fab

− iw3
d

∑

abc

χaχbχc fabc +w4
d

∑

abcd

χaχbχcχd fabcd

)〉

+ O(w6
d) (29)

where the f. take into account the phase of the particular path
followed.
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Figure 6. Average conductance as a function of θ+ and θ− for diagonal (a) and real off-diagonal (b) disorder. The other parameters appearing
in equation (14) are held fixed. It is clearly visible that a resonance occurs when the difference θ+ − θ− equals an integer multiple of π .

After some calculations, one arrives at the following
result:

〈g(E)〉 = 1 −w2
dL〈χ2〉 +w4

dL2(〈χ2〉)2

×
{

1 + 2

L2

L∑

a<b

[
cos

[
2(θ+ − θ−)(b − a)

]

+ cos
[
(θ+ − θ−)(b − a)

]]
}

+ O(w6
d). (30)

Notice that the quantity 2
L2

∑L
a<b cos[2(θ+ − θ−)(b − a)] goes

to zero for L → ∞ unless θ+ − θ− is an integer multiple of π .
In the latter case the fourth-order term acquires an additional
contribution, causing (together with higher orders) a peak in
the conductance. Analogously, the term 2

L2

∑L
a<b cos[(θ+ −

θ−)(b − a)] goes to zero for L → ∞ unless θ+ − θ− is an
integer multiple of 2π , when the fourth-order term acquires
again an additional contribution.

5.2. Real off-diagonal disorder

Similarly to the diagonal disorder case, the average
conductance as a function of the energy shows peaks at E = 0
(see figure 5(b)).

Analogously, in the (θ+, θ−) plane the average conduc-
tance shows resonances whenever the difference θ+ − θ−
equals an integer multiple of π (see figure 6(b)).

Consider again the expansion of the average conductance
(the strength of off-diagonal disorder is abbreviated to w f and
it is assumed again that G̃1,1 = −i ). In this case the following
result is obtained:

〈g(E)〉 = 1 −w2
f L〈χ2〉[2 + 2 cos(θ+ + θ−)] + O(w4

d) (31)

which very well describes the qualitative behavior in the
(θ+, θ−) plane where there is no peak (figure 6(b)).

The peaks are caused by higher-order terms. The third
order vanishes and the fourth order acquires the following
additional contribution when the condition θ+ − θ− = ±π
is satisfied:

〈g(E)〉 → 〈g(E)〉 +w4
f L2(〈χ2〉)2 Re[(eiθ+ + eiθ−

)4]
+ O(w6

f ). (32)

In the case that θ+ = −θ− (i.e. when the hoppings of the
periodic system are real) and θ+ = π/2, Re[(eiθ+ + eiθ−

)4] =
16, consistently with equation (37).

5.3. Definition of 〈g〉reg and 〈g〉res

As illustrated in sections 5.1 and 5.2, it is possible to define, at
every given order in the expansion, two different contributions
to the average conductance, i.e. a regular part which is not
sensitive to the validity of the resonant condition and a resonant
part which is relevant only when the resonance sets in. One can
more generally define:

• 〈g〉reg = sum of all the diagrams whose contribution is not
sensitive to the validity of the condition θ+ − θ− = π in
the limit L → ∞ with w2

GL = constant. These diagrams
are called ‘regular’.

• 〈g〉res = sum of all the diagrams whose contribution is
sensitive to the validity of the condition θ+ − θ− = π in
the limit L → ∞ with w2

GL = constant. These diagrams
are called ‘resonant’.
In more formal terms, a diagram belongs to this class if
and only if its ensemble-averaged value d(θ+, θ−,L, wG)

is such that

lim
L→∞

[
lim

(θ+−θ−)→π
d

]
	= lim

(θ+−θ−)→π

[
lim
L→∞ d

]
, (33)

with w2
GL = constant (it is also assumed that all the limits

do exist). It turns out that a diagram belonging to this
class gives always a negligible contribution if the resonant
condition is not satisfied, i.e. lim

(θ+−θ−)→π
[ lim
L→∞ d] = 0. The

lowest-order diagrams belonging to this category are of
the fourth order.

Since the definitions of 〈g〉reg and 〈g〉res are complemen-
tary, the total average conductance can be written as the sum of
the regular and of the resonant contribution:

〈g〉tot = 〈g〉reg + 〈g〉res (34)

and, away from any π -coupling:

〈g〉tot = 〈g〉reg. (35)

8
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Figure 7. First diagram contributing to 〈g〉res for θ+ − θ− = π .
When the position of a scatterer is shifted by one unit, the diagram
acquires an additional phase equal to ei2(θ+−θ−) = 1, leading to a
coherent sum over n and m.

From the latter equation it follows that the effects of the
Anderson localization (as known when no anomaly sets in) are
entirely contained in 〈g〉reg; the behaviors of 〈g〉reg and 〈g〉res

are in principle two factorized problems, each with its own
behavior.

Finally, the fourth-order diagram (lowest order) contribut-
ing to 〈g〉res is depicted for diagonal disorder in figure 7. The
examination of this diagram reveals what distinguishes the reg-
ular from the resonant diagrams: in a resonant diagram, when
the position of a scatterer is shifted by one unit the diagram
acquires an additional phase equal to ei2n(θ+−θ−) = 1 with n
integer, leading to a coherent sum.

5.4. Calculation of the perturbative expansion of 〈g〉res up to
the 12th order for θ+ = −θ− = π/2

By means of a numerical code, the expansion of 〈g〉res was
calculated up to the 12th order for both diagonal and real off-
diagonal disorder. Terms of the form w2nLm with m < n were
neglected (see section 4).

For diagonal disorder and choosing T1,1 = − 1
2 together

with 〈χ2〉 = 1, the following result is obtained:

〈g(E = 0)〉res = 2

2!w
4
dL2 − 42

3! w
6
dL3 + 888

4! w
8
dL4

− 24 336

5! w10
d L5 + 1521 631

6! w12
d L6 + · · · . (36)

For off-diagonal disorder, assuming further that θ+ = θ− =
π/2 (i.e. not only θ+ − θ− = π ), the result is

〈g(E = 0)〉res = 32

2!w
4
f L2 − 1664

3! w6
f L3 + 112 640

4! w8
f L4

− 10 698 752

5! w10
f L5 + 1392 902 144

6! w12
f L6 + · · · . (37)

It is not obvious whether these series are convergent in
some sense. However, a comparison of these two series
with numerical data shows that, at least for low disorder,
higher orders lead to better fits (see section 5.5). Moreover
the calculation of these expansions showed that, within any
given order, different kinds of diagrams always contribute with
the same sign for off-diagonal disorder, whereas they have
different signs for diagonal disorder. This partially explains
why the second series has much larger coefficients than the
first one.

5.5. Comparison of the expansion of 〈g〉res with the numerical
data

By calculating the difference of the average conductance at
E = 0 and at a slightly different energy (in this case E = 0.1),
it is possible to evaluate numerically the height of the peak and
compare the curve obtained with the expansions (36) and (37).
The results are shown respectively in figures 8(a) and (b).

6. Results for two coupled chains (N = 2)

Two coupled chains are the simplest systems which can
have a π -coupling away from the center of the energy
spectrum. Moreover, the π -coupling can occur between
different combinations of bands. The fourth order in
the expansion remains the lowest order contributing to the
resonance and can be used to make important predictions.

6.1. Fourth order for two coupled chains and two resonating
bands

This case is illustrated as an example at the energy E = 0.3
of figure 9. Taking care of all the angle combinations which
form a π -coupling it can be seen that the fourth order of
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Figure 8. Comparison of the numerical data of 〈g〉res for diagonal (a) and real off-diagonal (b) disorder with their expansion up to the
12th order. The length of the disordered region is in both cases L = 2000.
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Figure 9. Average DOS in arbitrary units (a), average
conductance (b) and band structure (c) of the two coupled chains
defined by equation (46). The density of states corresponds to the
disordered region (device) isolated from the leads. There are three
energies at which a π-coupling occurs. At these energies, the average
conductance and the density of states are peaked.

〈g〉res is given by the following equation (it is assumed that
θ+

2 − θ−
1 = π and θ+

1 − θ−
2 = π ):

〈g〉(4)res = L2

2! 〈Tr(P1 Mm P1 Mn P2 Mm P2 Mn P1

+ P1 Mm P2 Mn P1 Mm P2 Mn P1

+ P1 Mm P2 Mn P2 Mm P1 Mn P1

+ P2 Mm P2 Mn P1 Mm P1 Mn P2

+ P2 Mm P1 Mn P2 Mm P1 Mn P2

+ P2 Mm P1 Mn P1 Mm P2 Mn P2)〉 + c.c. (38)

where n and m are two different column indexes arbitrarily
chosen and

Mn = G̃W̃U,n Z + F−G̃W̃T,n + G̃W̃ †
T,n F+, (39)

Mm = G̃W̃U,m + G̃W̃T,m F− + F+G̃W̃ †
T,m, (40)

where

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)
,

F± =
(

e±iθ±
1 0

0 e±iθ±
2

)
,

(41)

W̃U(T ),i = Z †WU(T ),i Z , G̃ = Z †G Z . (42)

In order to illustrate the origin of the terms in
equation (38), consider as an example the first term,
i.e. P1 Mm P1 Mn P2 Mm P2 Mn P1. This product of matrices
should be read from the right to the left. It represents an elec-
tron which arrives from the first band (projector P1), scatters in
n (Mn), propagates in the second band (P2) up to the impurity

on-site m and so on. Every term of equation (38) represents
a different combination of the bands used to propagate, and
corresponds to a generalization of the diagram seen in figure 7.
Including the correct permutations of the bands involved, equa-
tion (38) can be generalized to any number of chains.

6.2. Fourth order for two coupled chains and only one
resonating band

This case is illustrated as an example at the energies E = 1 of
figure 9.

The fourth order of 〈g〉res in the case that θ+
1 − θ−

1 = π

and θ+
2 − θ−

2 	= π is given by the following equation:

〈g〉(4)res = L2

2! 〈Tr
(
P1 Mm P1 Mn P1 Mm P1 Mn P1

)〉 + c.c. (43)

where the symbols have the same meaning as in equation (38).
In order to illustrate some properties of the previous

expression, consider the example where θ+
1 = −θ−

1 = π
2 and

the matrices Z and G are given by

Z ≡ 1√
2

(
1 1
1 −1

)
; G̃ =

( − i
2 0

0 G̃2,2

)
. (44)

Using only off-diagonal disorder and assuming wT
1,2 =

wT
2,1 = 0, the result is

〈g〉(4)res = 1
32 Re

(〈(W T
1,1)

2〉 + 〈(W T
2,2)

2〉 − 〈(W U
1,2)

2〉)2 L2.

(45)
The latter expression shows an interesting feature: the two
kinds of off-diagonal disorder (on the T and on the U matrices)
compete with each other.

6.3. Example of resonances without energy symmetry

The cases where π -coupling between the bands occurs for
energies different from the center of the energy spectrum
or only between a subgroup of all the bands are interesting
because in these cases the (chiral or bipartite) sublattice
symmetry claimed in references [15, 19] is broken. An
example of this occurs for the system defined by

U =
(

0 −1
−1 0

)
; T =

( −1 −0.3
−0.3 −1

)
. (46)

The band structure of this system is shown in figure 9(c). It
can be seen that there are three energies at which a π -coupling
occurs. At the energy E = −1 and 1 only one band is involved,
while at the energy E = 0.3 a π -coupling occurs between two
bands. Notice that only the resonances occurring at E = 0.3
and 1 can be treated according to this formalism since all the
bands must be present.

In figure 9(a) the density of states is shown and in
figure 9(b) the average conductance for the two-chains system
with off-diagonal disorder. The energy band structure of the
perfect underlying system is presented in figure 9(c).

10



J. Phys.: Condens. Matter 21 (2009) 045503 L Alloatti

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
E=0

N

<
g>

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
E=0.1

N

<
g>

Figure 10. Average conductances as a function of the number N of chains. The left plot is calculated at E = 0 where the resonant
contribution is not vanishing, while the right plot is calculated at E = 0.1. Different curves correspond to different amounts of off-diagonal
disorder. The resonant contribution for odd numbers of chains is higher than for the even numbers.

6.4. Observation on the density of states

Detaching the disordered region (device) from the perfect leads
and calculating numerically the spectrum of eigenvalues for
many different disorder configurations, the average DOS of
the disordered region alone was obtained. An example of
this is depicted in figure 9(a). This figure is evidence for a
direct connection between the peaks in the conductance and
the peaks in the density of states. To the best of my knowledge,
such a connection has previously been demonstrated only for
strictly one-dimensional systems [24]. I performed numerous
simulations for many different systems, and I always observed
that, if a peak in the DOS is present, it occurs at the energies
where there is a π -coupling. Therefore, this indicates that not
only the conductance but also the DOS is intimately related
to the band structure of the periodic system underlying the
disorder.

7. Even–odd effect

Several studies have reported that coupled quantum chains
might show even–odd effects [3, 2, 4, 18, 19, 26]. Here it
is shown that π -coupling can induce an even–odd effect on
the average conductance. To the best of my knowledge, this
effect has been observed for the first time by monitoring the
localization length in similar systems, see [4]. Taking a family
of systems with T given by minus the identity and U having
−1 around the diagonal and zero elsewhere, I could see that the
resonant contribution 〈g〉res has oscillations as a function of the
number of chains while the regular part 〈g〉reg does not show
this feature. This result leads to oscillations in the conductance
for E = 0 shown in figure 10 (for any given number of chains
these systems have π -couplings at E = 0). I have performed
simulations with both diagonal and off-diagonal disorder, but
only the latter case shows this feature.

8. Conclusion

The message of this paper is that the band structure of
the perfect system underlying the disorder contains essential

information for the anomalies in the conductance and in
the density of states. I have proved that the peaks in the
conductance are caused by the resonant contribution 〈g〉res

defined in this paper, and that no further symmetry hypothesis
is needed to explain these anomalies. I have also shown that
the resonant contribution is responsible for an even–odd effect
of the average conductance. The formalism presented in this
paper is a very powerful tool for understanding delocalization
in disordered multichain systems, and makes it possible to
construct analytical expressions to tune the parameters of the
system so as to obtain high conductance peaks in the chosen
spectral regions.
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